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Cosmological Models 
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An LRS Bianchi type II cosmological model is built with a state equation that 
is a function of  the cosmic time t. The ratio p/Ix is 1/3 when t ~ 0  and is 
insignificant when t--> 00. Thus, the matter content behaves like radiation for 
small t and like dust for large t. 

1. INTRODUCTION 

The discovery of the cosmic microwave radiation by Penzias and Wilson 
(1965), which can be interpreted as a remnant of the big-bang beginning 
of the universe, is a starting point for all theoretical research giving a detailed 
picture about how the universe evolved into its present state. One of the 
usual pictures is the so-called standard hot big-bang model of the universe. 
According to this model, our universe begins in a state of rapid expansion 
with an infinite density and temperature (the initial singularity). A complete 
thermodynamic equilibrium then holds among photons, neutrinos, elec- 
trons, hyperons, mesons, etc. 

For epochs near the initial singularity we have a radiation-dominated 
regime where radiation pressure is 1/3 its mass-energy density, 

Pradiation : / . s  radiation//3 

The temperature its then redshifted by the expansion of the universe. 
When this falling temperature reached a few thousand degrees, the universe 
ceased to be radiation-dominated and became matter-dominated or nearly 
pressure-free (dust). In this idealized cosmology (Misner et al.,. 1973), 
galaxies may be considered as particles of a gas that fills the universe. The 
stress-energy tensor for this fluid of galaxies is the familiar one: 

T~ =(# + P)U~U~ + Pg~ 
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p~ is the mass-energy density, P is the pressure and, U~ is the 4-vector 
velocity with which one must move in order to measure an isotropic intensity 
for the cosmic microwave radiation. 

The pressure P, like the density ~, is due to both matter and radiation 
(Misner et al., 1973): 

P = Pmat ter  -it- Pradiat ion,  /.Z = ]/,matter q'- ~ radiation 

For our universe in its present state the pressure of the matter is much 
less than its mass-energy density: 

Pmat te r  << ]./'matter (today) 

But the pressure of radiation is always 1/3 its mass-energy density: 

Pradiation ----" ,tt, radiat ion/3 

Now, from current observations we have the following limits on the density 
of matter and radiation today (Misner et al., 1973): 

2 x 1 0  -31 g/cm 3 -< jt,~matter ~ 10  -28  g / c m  3 

0.7 x 10  -33 g/cm 3 _< J.tradiation ~ 10  -33 g/cm 3 

So, pressure today is roughly 10  -3  t o  10  - 2  times its energy density/z,  and 
with a good approximation our universe at the present epoch is dust-filled. 

Considering now the analytical models that may approximately fit some 
of the above features characterizing our universe, it appears that most 
(Kramer et  al., 1980) of the authors working in this field choose the following 
procedure. They solve the Einstein field equations with a stress-energy 
tensor of perfect fluid type by assuming an equation of state linking the 
pressure P and the energy density /z, in order to build analytical models 
characterizing our universe near its singularity (/x = 3P), or at its present 
epoch, where we have a matter-dominated regime. 

Another alternative, which was used by Davidson (1962) and later by 
many others (Coley and Tupper, 1986), considers models with variable 
equation of state, and deals essentially with the Friedmann-Robertson-  
Walker metric. Here this alternative is used in the case of Bianch type II 
cosmologies for the first time. 

The main idea used here is to leave one degree of freedom in the field 
equations, without assuming any equation of state and using the condition 
of isotropy of pressure. The result is then an analytical model with equation 
of state depending on the time t; once our solutions are obtained, they 
must satisfy the energy condition of Hawking and Ellis (1973) in order to 
be physically reasonable. 
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Once such analytical solutions are in hand, with pressure P and energy 
densi ty/z  linked by an equation of state such that P ~ m and /x  ~ ~ with 
P / t x  = 1/3 for t ~ 0 and P ~  0 and/~ ~ 0 when t ~ m, then we may confirm 
that they characterize the beginning of the universe or its present state. 

In fact, the main characteristics of this analytical model depend on a 
parameter  C which lies in the range 2 . 8 2 8 4 2 7 1 2 < C < 3 .  For C =  
2.886751346 we obtain the radiative case (/x = 3 P ) ;  and in this case our 
model describes the radiative regime (the beginning of our universe); for 
8.9-< C 2 -  < 8.99, the model fits the main characteristic of  our universe (P  << 
/x); in the case C = 3 we approach ultimately the dust case (P  = 0,/x = 0). 

In this paper,  I build a homogeneous LRS Bianchi type II  cosmological 
model (Maartens and Nel, 1978; Wainwright et al., 1979; Collins, 1971, 
1972; Ruban, 1978; Lorenz, 1980) satisfying all the above criteria; the 
distribution of matter is of  perfect fluid type. This is not a restrictive case 
by virtue of  the work of  Tupper  (1981, 1983a, b), which shows that the 
distribution of a perfect fluid may be equivalent to other complicated 
distributions of  matter such as as viscous fluid. 

2. FIELD E Q U A T I O N S  AND S O L U T I O N  

The Einstein field equations of  an LRS Bianchi type I I  universe filled 
with a perfect fluid can be expressed as follows: 

/~r /~2 S 2 
2 - - q -  R2 87r/z (1) R S  4R 4 

2 ~ + ~ - ' 7 -  3 ~--~= - 8 r  (2) 

~ ~ SR S ~ 
~ + ~ + ~ - + ~ - - ~  = - 87rP (3) 

where the dot denoted d /d t .  
The elimination of  the pressure P from (2) and (3) gives the condition 

of the isotropy of pressure, 

k g SR R2 s ~ 
R S S R ~ - ~ = 0  (4) 

Making the scale transformation 

dr = S dt 

into (4), we get 

R" R '2 I S "  S'2"~ 1 
(5) 

where the prime denotes d / d r .  
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we obtain 

r = R 2, s = S 2 

r" s" 2 
= 0  

i" S /.2 

Insert ing now the ad hoc relation 

into (7 ) ,we  obtain 

with solution 

S" - -2  

S /,2 

r tt 

m =  0 
F 

r(z)  = R2(~ -) = C~-+ C~ 

Going  back now to (8), and making the scale t ransformat ion  

t '=  C~'+ C 1 

in (8), we obtain 
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(6) 

(7) 

(8) 

(9) 

(10) 

C2t,2 d2s ~-~ + 2 s  = 0  (11) 

The general solution o f  (11) is 

s( t') = S2( t ') = A( t ' )  % + B(  t') % (12) 

where A and B are two constants  o f  integration and a l  and a 2 are the roots 
o f  the fol lowing equation:  

C 2 a 2 -  c E a  -t-2 = 0 (13) 

In  the case C 2 -  8, al  and ol 2 are real; note here that  this solution is reduced 
to that o f  Dunn  and Tupper  (1980) in the case A = 0 or  B -- 0. ( In this case 
the solution satisfies the equat ion o f  s tate/~ = np, where n > 1.) 

Using the field equat ions (1) and (2) and the formulas (10) and (12), 
we obtain 

A ( t ' ) % - 2 ( C 2 + 3  - 2a lC2)  + B(t')~2-2(C2+3 - 2 a 2 C  2) 
8~'P - (14) 

4 

A( t ' )  ~1-2( C 2 - 1 + 2c~1C 2) + B( t ' )  "2-2( C 2 - 1 + 2a l  C 2) 
8or /z  - ( 1 5 )  

4 
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Thus, the equation of state linking P and tz is a function of the 
time t'; the ratio P/I,~ depends on the values of C, a~, and 12, where 

(C2-8)1/2 
1 _ 1  -<1 ~ - < a l - ~ +  (16) 

2C 

0--<0/2 =1 (C2--8)1/2N1 (17) 
2C 

For C > 0, therefore, we have 

P C2+3-2c~2C 2 
---* for t ' ~ 0  [(t')~2>>(t') %] (18) 
tx C2-1+212C 2 

P C 2 + 3 - 2 1 1 C  2 
- - ~ C  2 - / z  l + 2 a ~ C  2 for t ' + m  [(t')%>>(t')%] (19) 

The values of P/Ix are listed in the Appendix. 
It is clear from the tables in the Appendix that for C 2= 8.33333, this 

model fits the radiation-dominated regime of  our universe; it behaves like 
a radiation-filled universe, the state equation being /z = 3P. In order to 
describe the actual situation of  our universe we must choose 8.9 < C 2 < 8.99. 

Thus, the behavior of our analytical model depends essentially on the 
values of  C. 

Finally, note that according to a theorem due to Goode and Wainwright 
(1986), our LRS Bianchi type II solution is of  Petrov type D. Furthermore, 
it then appears that for suitable choices of C, our model expands without 
bound from an initial radiation state to reach a final dust state. 

Similar results were obtained by Lemaltre (1929, 1930, 1931), McIntoch 
(1968), May and McVittie (1970), Sistro (1971), and, more recently, Coley 
and Tupper (1986). Also, as far as I know, this is the first model exhibiting 
this type of  behavior in the case of Bianchi type II cosmologies. 

For A and B > 0 and 8.3333333 < C:  < 9, the strong energy conditions 
of Hawking and Ellis (1973), 

- /x  _< p~ _</z,  / z>0 ,  P > 0  

are satisfied. Furthermore, the initial singularity is a point singularity in the 
sense of  Thorne (1967) and MacCallum (1971). 

3. C O N C L U D I N G  R E M A R K S  

The results reached above show that using the homogeneous space-time 
of  a Bianchi type Ii cosmology, one can construct analytical models within 
the framework of the general relativity theory which behave as radiation- 
filled ones for early epochs near the singularity and as dust models for the 
present epoch. 
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Table I. Values of  P/p. for t ~ 0  

C 2 ce z C 2 + 3 - 2 c t 2 C  2 C 2 - 1 + 2 a 2 C  2 P/Iz 

8.9 0.341000319 5.830194322 13.96980568 0.417342549 
8.92 0.339423685 5.86468146 13.97531854 0.419645637 
8.94 0.337869333 5.898896326 13.98110367 0.421919217 
8.96 0.336336583 5.932848433 13.98715157 0.424164162 
8.98 0.334824784 5.966546879 13.99345312 0.42638131 
8.99 0.334076556 5.983303523 13.99669648 0.427479693 
9 0.333333333 6 14 0.428571428 

Table II. Values of P/tz  for t ~ o o  

C 2 oq C 2 + 3 - 2 o q C  2 C 2 - 1 + 2 a 1 C  2 P/Ix 

8.9 0.658999681 0.169805679 19.63019432 8.650229143 • 10 -3 
8.92 0.660576315 0.135318541 19.70468146 6.867329537 x 10 -3 
8.94 0.662130667 0.101103675 19.77889633 5.111694472 x 10 -3 
8.96 0.663663417 0.087151568 19.85284843 4.389877266 x 10 -3 
8.98 0.665175216 0.033453121 19.92654688 1.678821785 x 10 -3 
8.99 0.665923444 0.016696477 19.96330352 8.363584205 • 10 -4 
9 0.66666666 0 20 0 

APPENDIX 

Tables I and II present the values of P/Ix for various values of the 
model parameters. 
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